img Earthworms and their Allies  /  Chapter 8 MOVEMENT AND MIGRATION AMONG EARTHWORMS | 88.89%
Download App
Reading History

Chapter 8 MOVEMENT AND MIGRATION AMONG EARTHWORMS

Word Count: 3612    |    Released on: 06/12/2017

plying the inches of progress in minutes of time by centuries with the resulting miles, it is quite clear that there is no reason to suppose that an individual earthworm might no

have led to its restriction. We are now, it must be borne in mind, considering these animals as purely terrestrial animals moving over the surface of the land by their own unaided efforts. We leave out of consideration any possible assistance in crossing water,

re this continent with the very

onsists, as will be remembered, of 33 genera at most, which have the following more exact range on the African continent. The genus Eudriloides occurs in British and German East Africa and has been met with as far south as Mo

ake Tanganyika. Stuhlmannia has a wider range still being found as it is in the Tanganyika district, in tropical North East Africa, and in British and German East Africa near the coast. Pareudrilus reaches still further north

same district but also to the south in the great lake region. The most remarkable fact about this genus is that one species E. steindachneri comes from the Cameroons, and another E. congicus from the Congo, and thus the range of the

at with one exception the genera of East Africa are totally different from those of West Africa and that the family as a whole is restricted in its range to a comparatively small part of the vast African continent. It also obviously fol

, exceptions. In any case the utmost divergence of structure between worms usually placed together in this genus is nowhere near to that which separates the genera of Eudrilidae from each other. Of the African members of the genus the species are pretty evenly divided between the eastern and western halves of the continent; they are, like the Eudrilidae, tropical in range, not occurring to the southward, where their place is taken by the Acanthodrilinae and Geoscolecidae. There are it is true a few s

do two such Eudrilid genera as Stuhlmannia and Hyperiodrilus. We find the genera mentioned not only in Europe but extending themselves over more or less of Asia, even occurring in Japan; while the North American continent contains also representatives of the same. Not only do we find this community of genera over vast extents of country greater in diameter than the African continent, but there are also many species which range as widely or nearly as widely as the case may be as the genus to which they belong. Thus the species of Allolobophora (we do not trouble about the newer sub-divisions as they hardly affect the facts to be emphasised), A. caliginosa, A. longa, A. rubida,

by community of species in widely distant localities) was evidence merely of relative age, that the older groups have had more time to travel and that the newer groups have not had so long a time to spread themselves over their habitat. On this hypothesis the genera of Eudrilidae would be geologically much newer than the genus Dichogaster and similar statements might be made for the other forms here under consideration. As already explained we cannot attempt to answer this question in the only way in which it can be really satisfactorily answered, by a reference to fossil forms; for there are no fossils to refer to. So far as comparative anatomy enables us to arrive towards a solution of the question, it would appear that the genus Dichogaster belongs to a more ancient race than either of the other two gro

Affecting

ively cold regions. We have already seen that there are no general facts to be deduced as concerning the relative abundance of terrestrial worms in the tropics and in more temperate climes. Tropical Africa is, it is true, rich in genera and species; but on the other hand tropical East Indies have but few genera inhabiting their numerous islands. Temperate England has very few genera and not a large number of species; temperate New Zealand has a considerable number of different indigenous genera. When however we leave this general aspect of the question and consider separate families and genera, there seems to be some little relation between climate and distribution and thus some effect of climate in acting as a barrier to migration. For example, though continuity of land surface permit

eretima though commonly imported accidentally into the warmer regions of the world have not been able to make good a footing in Europe, save in greenhouses, shows that this genus is affected in its range by questions of climate. These facts suggest another inference of great interest which can only be mentioned tentatively, and not put forward as a demonstrated conclusion. Seeing that Lumbricus (sensu lato) can comfortably take up its home in warm extra-European countries, but yet that it has evidently not spread to those countries in the course of nature but by man's interference, it seems possible tha

nges and th

arth

e spread of earthworms. The recent explorations of the Ruwenzori chain of mountains in Africa have resulted in the collection of a considerable number of species, some of which come from great altitudes (e.g. 4000 metres and slightly upwards), and one species, viz. Dichogaster duwonica, which Dr Cognetti de Martiis described from the foot of the glacier Elena. I have in my temporary possession a number of examples

case with regard to particular species, a mountain range is

a Barrier T

cocoons are susceptible to salt water and are killed thereby. Thus the facilities which these animals possess of crossing tracts of ocean are limited by this fact alone, besides other impediments offered by tracts of water as such. We may in fact entirely discount the possibility of earthworms floating across arms of the sea-of any extent at any rate. For they do not swim or float, but sink in water. Possibly when the alimentary tract was entirely empty of earth the worms might float; but it is always full and even if evacuated during their passage to the bottom waters the body thus freed would hardly rise. However the noxious qualities of sea water to earthworms is a sufficient barrier to their traversing even narrow straits. On th

es of Mi

tracts of sea by the aid of living carriers such as birds? It has been definitely shown that these creatures actually do convey such small animals as Mollusca attached to their feet. Is anything of the kind likely in the case of earthworms? In the first place it may be safely asserted that if it be possible it has not been actually proved. This however might be perhaps put down to the lack of sufficient observation of actual birds and the contents of such masses of soil as are found attached to their feet. A consideration of the habits of earthworms seems to imply that such a mode of transference from country to country is unlikely. In the first place we remark that the general behaviour of earth

r there remains another difficulty. A single cocoon among the terrestrial Oligochaeta does not contain a large number of embryos, as has been pointed out on a previous page. It is true that Allolobophora foetida has six within one cocoon, but most of our indigenous forms have but from one to three embr

hich are liable to be entangled in the feet of shore-frequenting birds, would tend to favour migration. And in addition to this the cocoons are naturally smaller

Download App
icon APP STORE
icon GOOGLE PLAY