The Scriptures tell us that Samson, the mighty man of the Bible, killed a thousand Philistines at one time with the jaw-bon
om various kinds of stone and with varying degrees of skill. Spear-points and arrow-heads were made of flint. These show a comparatively high type of workmanship. The highest efforts of the ancient stone-workers culminated in a leaf-shaped dagger
owing Knig
from hilt to point, and the handle was of bone, horn, or wood. The thinness of the edge seems to have been produced without the aid of hammer or file. The weapon was better fitted for stabbing and thrusting than for cutting with the edge. Bronze spear-points have been found, but through
lso were used. The only iron weapon specifically mentioned is the arrow-head. This was inserted in a split shaft, precisely like the flint arrow-heads of the early North American Indians and other modern savages. The defensive armor of the heroic age of Greece was entirely of bronze. It consisted of a helmet for the head, cuirass for the chest, greaves for the legs, and a shield. The bronze cuirass was often ornamented with gold. The shield was round or oval in shabattle-axe for combat at close quarters. Their defensive armor consisted of a quilted head-piece and coat. They used no shield, as this would have interfered with the use of the bow. The infantry were classified according to the weapons with which they fought-as spearmen, swordsmen, clubmen, and slingers. The spears were five or six feet long and had triangular or leaf-shaped heads of bronz
shields were round and convex; and their cuirass was a close-fitting garment made of many layers of flax, plaited together or in
pilum could be hurled as a javelin with great effect. Piercing the shield of the enemy, the slender iron rod bent under the weight of the shaft, which trailed along the ground, making the shield useless for purposes of defense. When used at close quarters, the pilum had something of the efficiency of the modern bayonet; and when wielded firmly in both hands, it served to ward off sword-strokes, which fell harmlessly u
o armor, not even helmets, though they carried swords, round shields, and darts with barbed iron heads, which were used for throwing or thrusting. When this dart became fixed in an adversary's shield, it was the habit of the Frank to bound forward, place a foot upon one end of the trailing dart, and, compelling the enemy to lower his shield, slay him with
ht in
rank of thane. The infantry bore the other weapons. The early Anglo-Saxons do not appear to have used the bow and arrow, though in later times the long bow was an important weapon in Englair sides. Mail armor of interlinked metallic rings was used until the beginning of the fourteenth century. From this time to the beginning of the seventeenth century, armor was made of solid plates of metal. After 1600, armor was graf the Fifte
d vary in different countries and in different kinds of powders. It seems likely that powder was invented in the Far East, perhaps in China. Saltpetre comes, for the most part, from China and India, on whose vast plains it is found mixed with the soil. An ordinary wood fire kindled on ground containing saltpetre would bring the saltpetre into contact with charcoal, and the
ristians both used some kind of artillery as early as the twelfth century after Christ. Gunpowder was first introduced into England by Roger Bacon, a British scientist, who was born early in the thirteenth century. He probably did not discover its properties independently, but by reading ancient manuscripts. Owing to the crude and uncertain methods of making gunpowder, it did not attain much va
in the battle at Crécy, a small town in France, where on August 26, 1346, the English defeated the French. The artillery seeme
artificially, and then the manufacture of powder extended among the nations. During the French Revolution, according to Carlyle, the revolutionists were driven to such extremities for want of pow
projectile half a mile. Both machines were used by the Romans with great effect, in both defensive and offensive warfare. In destroying the wall of a besieged town, the Romans used a battering-ram. It consisted of a beam of wood with a mass of bronze or iron on the end resembling a ram's head. In its earliest form, the battering-ram was beaten against the wall by the soldiers; later it was suspended in a frame and made to swing with ropes. Another kind moved on rollers, the swinging movement
ron cannon came into use. The next improvement was the production of cannon of steel, and for some years past the best artillery has been made of this material. After stone balls ceased to be used, round balls of iron were utilized.
es in calibre (diameter of bore), weigh a hundred tons, are thirty-five feet long, shoot a shell weighing nearly a ton, consume at each charge 450 pounds of powder, and have the power of penetrating solid iron armor plate to the depth of almost two feet, at a distance of one thousand yards. At least a year and a quarter is required for making one of the great, heavy guns, and often a longer time. The cost of construct
in 1860 by Dr. R. J. Gatling, of Indianapolis. It consists of a number of parallel barrels, usually ten, grouped around and fastened to a central shaft. Each barrel has its own mechanism for firing. As the barrels revolve, loaded cartridges are fed into them by machinery an
uction of steel for the manufacture of heavy guns. He believed in the utility of steel when the great governments of the earth had no faith in it. The works at Essen cover in all about one thousand acres, and in them twenty thousand persons find employment. To Krupp Germany
man of the Early S
d by applying a lighted match to a touch-hole in the top of the barrel. One kind of powder was used for priming; another for firing. Before the invention of cartridges, the powder and bullets were loaded separately at the muzzle, with some kind of packing between. The colonial rifles in A
nt which led to the invention of the percussion cap. This improvement revolutionized the mechanism of firearms. Many improvements have been made recently in arms, so tha
he trunks of trees, either with fire or with such crude tools as they possessed. The Latin poet Virgil mentions "hollowed alders" used for boats, and indeed canoes were made from hollowed tree trunks as long ago as the Stone Age. The next step forward in the art of shipbu
ere fighting at sea. The oldest ships of which we have knowledge were Egyptian. The vessels of war were then propelled by oarsmen, who were protected from the misix or seven centuries before Christ. The word means a vessel with two rows or banks of oarsmen on each side, one row above the other. This disposition of rowers was evidently for the purpose of securing the largest possible number in the least possible space. It is probable that the Greeks did not originate the bireme, but borrowed
banks of oars, drifted to the Roman coast. The Romans copied it, set up frames on dry land in which crews were taught to row, and in sixty days from the time the trees were felled they had built and manned a fleet. Later the Romans used grappling hooks with which they b
ame steam. But after gunpowder and steam had worked a revolution in t
ar Norfolk, Virginia, during the Civil War in America. The battle was the combat between the Merrimac and the Monitor. This
t in diameter at the mouth. The North Dakota required 4688 tons of steel armor at a cost of more than four hundred dollars per ton. Each of its great twelve-inch guns cost nearly $110,000, weighs fifty-two tons, and hurls a projectile weighing 850 pounds a distance of twelve miles. Three hundred and eighty-five pounds of powder are consumed at a single discharge. At a distance of more than a mile
ried for purifying the air in the water-tight compartments in which the crews live while the boat is below the surface of the water. There is also a special apparatus for signalling other vessels or the shore, in case of danger. In 1904 three vessels, designated X, Y