lties o
me species-Species with habits widely different from those of their allies-Organs of extreme perfection-Means of transition-Cases of difficulty-Natura non facit saltum-Or
me of them are so grave that to this day I can never reflect on them without being staggered; but, to the best o
descended from other species by insensibly fine gradations, do we not everywhere see innumerable transit
lly different habits? Can we believe that natural selection could produce, on the one hand, organs of trifling importance, such as the tail of a giraffe, which ser
shall we say to so marvellous an instinct as that which leads the bee to make ce
being sterile and producing sterile offspring, whereas,
here discussed-Instinct and H
nally to exterminate, its own less improved parent or other less-favoured forms with which it comes into competition. Thus extinction and natural selection will, as we have seen, go hand in hand. Hence, if we look
upposed; the imperfection of the record being chiefly due to organic beings not inhabiting profound depths of the sea, and to their remains being embedded and preserved to a future age only in masses of sediment sufficiently thick and extensive to withstand an enormous amount of future degradation; and such fossiliferous masses can be accumulated only where much sediment is deposited on the shallow
r becomes more and more frequent, till the one replaces the other. But if we compare these species where they intermingle, they are generally as absolutely distinct from each other in every detail of structure as are specimens taken from the metropolis inhabited by each. By my theory these allied species have descended from a common parent; and during the process of modification, each has become adapted to the conditions of life of its own region, and has supplanted and exterminated its original par
e been separately formed without the possibility of intermediate varieties existing in the intermediate zones. By changes in the form of the land and of climate, marine areas now continuous must often have existed within recent times in a far less continuous and uniform condition than at present. But I will pass over this way o
conditions of life as the all-important elements of distribution, these facts ought to cause surprise, as climate and height or depth graduate away insensibly. But when we bear in mind that almost every species, even in its metropolis, would increase immensely in numbers, were it not for other competing species; that nearly all either prey on or serve as prey for others; in short, that each organic being is either directly or indirectly related in the most important manner to other organic beings, we must see that the range of the inhabitants of any country by no means exclusively depends on insensibly changing physical conditions, but in large part on the
to a narrow intermediate zone. The intermediate variety, consequently, will exist in lesser numbers from inhabiting a narrow and lesser area; and practically, as far as I can make out, this rule holds good with varieties in a state of nature. I have met with striking instances of the rule in the case of varieties intermediate between well-marked varieties in the genus Balanus. And it would appear from information given me by Mr. Watson, Dr. Asa Gray, and Mr. Wollaston, that generally when varieties intermediate bet
ing in larger numbers will always have a better chance, within any given period, of presenting further favourable variations for natural selection to seize on, than will the rarer forms which exist in lesser numbers. Hence, the more common forms, in the race for life, will tend to beat and supplant the less common forms, for these will be more slowly modified and improved. It is the same principle which, as I believe, accounts for the common species in each country, as shown in the second chapter, presenting on an average a greater number of well-marked varieties than do the rarer species. I may illustrate what I mean by supposing three varieties of sheep to be kept, one adapted to an extensive mountainou
tions chance to occur, and until a place in the natural polity of the country can be better filled by some modification of some one or more of its inhabitants. And such new places will depend on slow changes of climate, or on the occasional immigration of new inhabitants, and, probably, in a still more important degree, o
ay have separately been rendered sufficiently distinct to rank as representative species. In this case, intermediate varieties between the several representative species and their common parent, must form
ely from what we know of the actual distribution of closely allied or representative species, and likewise of acknowledged varieties), exist in the intermediate zones in lesser numbers than the varieties which they tend to connect. From this cause alone the intermediate varieties will be liable to accidental extermination; and
y have existed; but the very process of natural selection constantly tends, as has been so often remarked, to exterminate the parent-forms and the intermediate links. Consequently evidence
ing every intermediate grade between truly aquatic and strictly terrestrial habits; and as each exists by a struggle for life, it is clear that each is well adapted in its habits to its place in nature. Look at the Mustela vison of North America, which has webbed feet and which resembles an otter in its fur, short legs, and form of tail; during summer this animal dives for and preys on fish
s of transitional habits and structures in closely allied species of the same genus; and of diversified habits, either constant or occasional, in the same sp
bt that each structure is of use to each kind of squirrel in its own country, by enabling it to escape birds or beasts of prey, or to collect food more quickly, or, as there is reason to believe, by lessening the danger from occasional falls. But it does not follow from this fact that the structure of each squirrel is the best that it is possible to conceive under all natural conditions. Let the climate and vegetation change, let other competing rodents or new beasts of prey immigrate, or old ones become modified, and all analogy wou
the Galeopithecus with the other Lemurid?, yet I see no difficulty in supposing that such links formerly existed, and that each had been formed by the same steps as in the case of the less perfectly gliding squirrels; and that each grade of structure was useful to its possessor. Nor can I see any insuperable difficulty in further believing it possible that the membrane-connected fingers a
ils, like the ostrich; and functionally for no purpose, like the Apteryx. Yet the structure of each of these birds is good for it, under the conditions of life to which it is exposed, for each has to live by a struggle; but it is not necessarily the best possible under all possible conditions. It must not
flying reptiles, it is conceivable that flying-fish, which now glide far through the air, slightly rising and turning by the aid of their fluttering fins, might have been modified into perfectly winged animals. If this had been effe
een structures fitted for very different habits of life will rarely have been developed at an early period in great numbers and under many subordinate forms. Thus, to return to our imaginary illustration of the flying-fish, it does not seem probable that fishes capable of true flight would have been developed under many subordinate forms, for taking prey of many kinds in many ways, on the land a
its; both probably often change almost simultaneously. Of cases of changed habits it will suffice merely to allude to that of the many British insects which now feed on exotic plants, or exclusively on artificial substances. Of diversified habits innumerable instances could be given: I have often watched a tyrant flycatcher (Saurophagus sulphuratus) in South America, hovering over one spot and then proceeding to another, like a kestrel, and at other times standing stationary on the margin of w
ified from that of their proper type. And such instances do occur in nature. Can a more striking instance of adaptation be given than that of a woodpecker for climbing trees and for seizing insects in the chinks of the bark? Yet in North America there are woodpeckers which feed largely on fruit, and others with elongated wings which chase ins
it takes flight, would be mistaken by any one for an auk or grebe; nevertheless, it is essentially a petrel, but with many parts of its organisation profoundly modified. On the other hand, the acutest observer by examining the dead b
on has seen the frigate-bird, which has all its four toes webbed, alight on the surface of the sea. On the other hand grebes and coots are eminently aquatic, although their toes are only bordered by membrane. What seems plainer than that the long toes of grallatores are formed for walking over swamps and floating plants, yet the water-hen is nearly as aquatic as the coot; and the lan
cknowledge that every organic being is constantly endeavouring to increase in numbers; and that if any one being vary ever so little, either in habits or structure, and thus gain an advantage over some other inhabitant of the country, it will seize on the place of that inhabitant, however different it may be from its own place. Hence it will cause hi
ations from a perfect and complex eye to one very imperfect and simple, each grade being useful to its possessor, can be shown to exist; if further, the eye does vary ever so slightly, and the variations be inherited, which is certainly the case; and if any variation or modification in the organ be ever useful to an animal under changing conditions of life, then the difficulty of believing that a perfect and
s from the same original parent-form, in order to see what gradations are possible, and for the chance of some gradations having been transmitted from the earlier stages of descent, in an unaltered or little altered condition. Amongst existing Vertebrata, we find but a small am
s-shaped swelling. In other crustaceans the transparent cones which are coated by pigment, and which properly act only by excluding lateral pencils of light, are convex at their upper ends and must act by convergence; and at their lower ends there seems to be an imperfect vitreous substance. With these facts, here far too briefly and imperfectly given, which show that there is much graduated diversity in the eyes of living crustaceans, and be
and to admit that a structure even as perfect as the eye of an eagle might be formed by natural selection, although in this case he does not know any of the transitional grades. His reason ought
every part of this layer to be continually changing slowly in density, so as to separate into layers of different densities and thicknesses, placed at different distances from each other, and with the surfaces of each layer slowly changing in form. Further we must suppose that there is a power always intently watching each slight accidental alteration in the transparent layers; and carefully selecting each alteration which, under varied circumstances, may in any way, or in any degree, tend to produce a distincter image. We must suppose each new state of the instrument to be
transitional grades, more especially if we look to much-isolated species, round which, according to my theory, there has been much extinction. Or again, if we look to an organ common to all the members of a large class, for in this latter case the organ must have been first f
t and the stomach respire. In such cases natural selection might easily specialise, if any advantage were thus gained, a part or organ, which had performed two functions, for one function alone, and thus wholly change its nature by insensible steps. Two distinct organs sometimes perform simultaneously the same function in the same individual; to give one instance, there are fish with gills or branchi? that breathe the air dissolved in the water, at the same
has, also, been worked in as an accessory to the auditory organs of certain fish, or, for I do not know which view is now generally held, a part of the auditory apparatus has been worked in as a complement to the swimbladder. All physiologists admit that the swimbladder is homol
s over the orifice of the trachea, with some risk of falling into the lungs, notwithstanding the beautiful contrivance by which the glottis is closed. In the higher Vertebrata the branchi? have wholly disappeared-the slits on the sides of the neck and the loop-like course of the arteries still marking in the embryo their former position. But it is conceivable that the now utterly lost branchi?
ation. The Balanid? or sessile cirripedes, on the other hand, have no ovigerous frena, the eggs lying loose at the bottom of the sack, in the well-enclosed shell; but they have large folded branchi?. Now I think no one will dispute that the ovigerous frena in the one family are strictly homologous with the branchi? of the other family; indeed, they graduate into each other. Therefore I do not doubt that little folds of skin, which originally served as ovigerous frena, but which, likewis
ibly have been produced by successive transitional gradations, yet, undoubtedly, g
of special difficulty; it is impossible to conceive by what steps these wondrous organs have been produced; but, as Owen and others have remarked, their intimate structure closely resembles that of common muscle; and as it has lately be
pecially related to each other. Nor does geology at all lead to the belief that formerly most fishes had electric organs, which most of their modified descendants have lost. The presence of luminous organs in a few insects, belonging to different families and orders, offers a parallel case of difficulty. Other cases could be given; for instance in plants, the very curious contrivance of a mass of pollen-grains, borne on a foot-stalk with a sticky gland at the end, is the same in Orchis and Asclepias,-genera almost as remote as possible amongst flowering plants. In all these cases of two very distinct species fur
t exaggerated canon in natural history of "Natura non facit saltum." We meet with this admission in the writings of almost every experienced naturalist; or, as Milne Edwards has well expressed it, Nature is prodigal in variety, but niggard in innovation. Why, on the theory of Creation, should this be so? Why should all the parts and organs of many independent beings, each supposed to have been separately
unfavourable deviation of structure,-I have sometimes felt much difficulty in understanding the origin of simple parts, of which the importance does not seem sufficient to cause the preserva
looks like an artificially constructed fly-flapper; and it seems at first incredible that this could have been adapted for its present purpose by successive slight modifications, each better and better, for so trifling an object as driving away flies; yet we should pause before being too positive even in this case, for we know that the distribution and existence of cattle and other animals in South America absolutely depends on their power of resisting the attacks o
e will always have been checked by natural selection. Seeing how important an organ of locomotion the tail is in most aquatic animals, its general presence and use for many purposes in so many land animals, which in their lungs or modified swimbladders betray their aquatic origin, may perhaps be thus accounted f
acters reappear from the law of reversion; that correlation of growth will have had a most important influence in modifying various structures; and finally, that sexual selection will often have largely modified the external characters of animals having a will, to give one male an advantage in fighting with another or in ch
the aid of exquisitely constructed hooks clustered around the ends of the branches, and this contrivance, no doubt, is of the highest service to the plant; but as we see nearly similar hooks on many trees which are not climbers, the hooks on the bamboo may have arisen from unknown laws of growth, and have been subsequently taken advantage of by the plant undergoing further modification and becoming a climber. The naked skin on the head of a vulture is generally looked at as a direct adaptation for wallowing in putridity; and so it may be, or it may possibly be due to the direct action of p
ressure the shape of the head of the young in the womb. The laborious breathing necessary in high regions would, we have some reason to believe, increase the size of the chest; and again correlation would come into play. Animals kept by savages in different countries often have to struggle for their own subsistence, and would be exposed to a certain extent to natural selection, and individuals with slightly different constitutions would succeed best under different climates; and there is reason to believe that constitution and colour are correlated. A good observer, also, states that in cattle susceptibility to the attacks of flies is correlated with colour, as is the liability to be poisoned by certain plants; so that colour would be thus subjected to the action of natural selection. But we a
he effects of sexual selection, when displayed in beauty to charm the females, can be called useful only in rather a forced sense. But by far the most important consideration is that the chief part of the organisation of every being is simply due to inheritance; and consequently, though each being assuredly is well fitted for its place in nature, many structures now have no direct relation to the habits of life of each species. Thus, we can hardly believe that the webbed feet of the upland goose or of the frigate-bird are of special use to these birds; we cannot believe that the same bones in the arm of the monkey, in the fore-leg of the horse, in the wing of the bat, and in the nipper of the seal, are of special use to these animals. We may safely attribute these structures to inheritance. But to the progenitor of the upland goose and of the frigate-bird, webbed feet no doubt were as useful as they now are to the most aquatic of existing birds. So we
deposited in the living bodies of other insects. If it could be proved that any part of the structure of any one species had been formed for the exclusive good of another species, it would annihilate my theory, for such could not have been produced through natural selection. Although many statements may be found in works on natural history to this effect, I cannot find even one which seems to me of any weight. It is admitted t
the purpose of causing pain or for doing an injury to its possessor. If a fair balance be struck between the good and evil caused by each part, each will be found on the whole advantageous. Aft
e advancing legions of plants and animals introduced from Europe. Natural selection will not produce absolute perfection, nor do we always meet, as far as we can judge, with this high standard under nature. The correction for the aberration of light is said, on high authority, not to be perfect even in that most perfect organ, the eye. If our reason leads us to admire with enthusiasm a multitud
ion, though it may cause the death of some few members. If we admire the truly wonderful power of scent by which the males of many insects find their females, can we admire the production for this single purpose of thousands of drones, which are utterly useless to the community for any other end, and which are ultimately slaughtered by their industrious and sterile sisters? It may be difficult, but we ought to admire the savage instinctive hatred of the queen-bee, which urges her instantly to destroy the young queens her daughters as soon as born, or
ral selection will always be very slow, and will act, at any one time, only on a very few forms; and partly because the very process of natural selection almost implies the continual supplanting and extinction of preceding and intermediate gradations. Closely allied species, now living on a continuous area, must often have been formed when the area was not continuous, and when the conditions of life did not insensibly graduate away from one part to another. When two varieties are formed
habits of life could not graduate into each other; that a bat, for instance, could not have b
those of its nearest congeners. Hence we can understand, bearing in mind that each organic being is trying to live wherever it can live,
able degree of perfection through natural selection. In the cases in which we know of no intermediate or transitional states, we should be very cautious in concluding that none could have existed, for the homologies of many organs and their intermediate states show that wonderful metamorphoses in function are at least possible. For instance, a swim-bladder has a
modifications, wholly due to the laws of growth, and at first in no way advantageous to a species, have been subsequently taken advantage of by the still further modified descendants of this species. We may, also, believe that a part formerly of high importance has often been retained (
the competition of the inhabitants one with another, and consequently will produce perfection, or strength in the battle for life, only according to the standard of that country. Hence the inhabitants of one country, generally the smaller one, will often yield, as we see they do yield, to the inhabitants of another and generally larger country. For in the l
history, "Natura non facit saltum." This canon, if we look only to the present inhabitants of the world,
of descent. The expression of conditions of existence, so often insisted on by the illustrious Cuvier, is fully embraced by the principle of natural selection. For natural selection acts by either now adapting the varying parts of each being to its organic and inorganic conditions of life; or by having adapted them during long-past periods of time: the ad