dwell. Vast, indeed, are the distances of the planets when measured by our terrestrial standards. A cannon-ball fired from the earth to celebrate the signing of the Declaration
un is of such size that a railway train running sixty miles an hour, with never a stop, would take about three hundred and fifty years to cross it. Represent this orbit by a lady's finger-ring. Then the nearest fixed star will be about a mile and a half away; the next more than two mil
ng it may be seen in the northeast, in the later summer near the zenith, in the autumn in the northwest. On the scale we have laid down with the earth's orbit as
l constellation with a speed to which no motion on earth can compare. The speed has recently been determined with a fair degree of certainty, though not with entire exactness; it is about ten miles a second, and therefore not far from three hundred millions of miles a year. But whatever it may be, it is unceasing an
he unsolved problems of astronomy. An astronomer who should watch the heavens for ten thousand years might gather some fain
stant ones. A given motion seems slower the more distant the moving body; we have to watch a steamship on the horizon some little time to see that she moves at all. Thus it is that the unsolved problem of the motion of our sun is only one branch of a yet more stupendous one: What mean the motions of the stars-how did they begin, and how, if ever, will they end? So far as we can yet see, each star is going straight ahead on its own journey, without regard to its neighbors, if other stars can be so called. Is each describing some vast orbit w
istance increases that, at the distances which separate the stars, it is small indeed. We could not, with the most delicate balance that science has yet invented, even show the attraction of the greatest known star. So far as we know, the two swiftest-moving stars are, first, Arcturus, and, second, one known in astronomy as 1830 Groombridge, the latter so called because it was first observed by the astronomer Groombridge, and is numbered 1830 in his catalogue of stars. If our determinations of the distances of these bodies are
would be some ten miles and Arcturus thirty or forty miles away. Either of them would be moving only two or three feet in a year. To the oldest Assyrian priests Lyra looked much as it does to us to-day. Among the b
mber past count, perhaps one hundred millions. Are all these stars only those few which happen to be near us in a universe extending out without end, or do they form a collection of stars outside of which is empty infinite space? In other words, has the universe a boundary? Taken in its widest scope this question must always remain unanswered b
n itself within his mental grasp. It can be shown mathematically that an infinitely extended system of stars would fill the heavens with a blaze of light like that of the noonday sun. As no such effect is produced, it may be concluded that the universe has a boundary. But this does no
ich the telescope shows us become more and more condensed in the Milky Way as telescope power is increased. The number of new stars brought out with our greatest power is vastly greater in the Milky Way than in the rest of the sky, so that the former contains a great majority of the stars. What is yet more curious, spectroscopic research has shown that a particular kind of stars, those formed of heated gas, are yet more condensed in the
the smallest stars we can photograph are at the boundary of the system. Before we decide this point we must have some idea of the form and distance of the cloudlike masses of stars which form our great celestial girdle. A most curious fact is that our solar system seems to be in the centre of this galactic universe, because the Milky Way divides the heavens into two equal parts,
few months neither man nor animal would be alive, unless crouching over fires soon to expire for want of fuel. We also know that, at a time which is geologically recent, the whole of New England was covered with a sheet of ice, hundreds or even thousands of feet thick, above which no mountain but Washington raised its head. It is quite possible that a small diminuti
t can be received by the planets or by other stars, because these are mere points compared with their distance from us. Taking the teaching of our science just as it stands, we should say that all this heat continues to move on through infinite space forever. In a few thousand years it reaches the probable confines of our great universe. But we know of no reason why it should stop here. During
being better able to see what is going on, owing to the comparative nearness of the planets. When we learn that these bodies are like our earth in form, size, and motions, the first question we ask is, Could we fly from planet to planet and light on the surface of each, what sort of scenery would meet our eyes? Mou
its eternal deadness with the active life around us is great indeed. Here we have weather of so many kinds that we never tire of talking about it. But on the moon there is no weather at all. On our globe so many things are constantly happening that ou
he case with Venus. Ever since the telescope was invented observers have tried to find the time of rotation of this planet on its axis. Some have reached one conclusion, some another, while the wisest have only doubted. The great Herschel claimed that the planet was so enveloped in vapor or clouds that no permanent features could be seen on its surface. The best equipped recent observers think they see
ions of a transit across the sun's disk. Hence, on ordinary occasions, when she seems very near on a line with the sun, we see a very small part of the illuminated hemisphere, which now presents the form of a very thin crescent like the new moon. And this crescent is suppose
ut a round notch from the edge of the sun. At first, when this notch was small, nothing could be seen of the outline of that part of the planet which was outside the sun. But when half the planet was on the sun, the outline of the part still off the sun was marked by a slender arc of light. A curious fact was that this arc did not at first span the whole outline of the planet
factory. It seems certain that the so-called seas are really land and not water. When it comes to comparing Mars with the earth, we cannot be certain of more than a single point of resemblance. This is that during the Martian winter a white cap, as of snow, is formed over the pole, which partially melts away during the summer. The conclusion that there are oceans whose evaporation forms clouds which give rise to this snow seems plausible. But the telescope shows no clouds, and nothing to make it certain that there is an atmosphere to sustain them. There is no certainty that the white deposit is what we
of the condition of whose surface we can claim to have definite knowledge. But even this knowledge is meagre. The substance of wh
ly is. Of course we know a great deal about the spots, the rotation of the sun on its axis, the materials of which it is composed, and how its surroundings look during a total eclipse. But all this does not answer our question. There are several mysteries which ingenious men have tried to explain, but they cannot prove their explanations to be correct. One is the cause and nature of the spots. Another is that the shining surface of the sun, the "photosphere," as it is technically called, seem
is called the corona, and has been most industriously studied and photographed during nearly every total eclipse for thirty years. Thus we have learned much about how it looks and what its shape is. It has a fibrous, woolly structure, a little like the loose end of a much-worn hempen rope. A certain resemblance has been seen between
F THE CORONA OF THE SUN, TAKEN IN TRIPOL
loud of small meteoric bodies revolving round the sun. We should hardly doubt this explanation were it not that this light has a yet more mysterious appendage, commonly called the Gegenschein, or counter-glow. This is a patch of light in the sky in a direc
the planets follow the predictions of the astronomer so closely that, if you could see the predicted planet as a separate object, it would look, even in a good telescope, as if it exactly fitted over the real planet, one thinks that here at least is a branch of astronomy wh
olve a little faster, and then again a little slower. The changes are very slight; they can be detected only by
d of her regular rate, and then for another half-century or more she will fall behind. The changes are very small; they would never have been se
t that they gave it a name, calling it Vulcan. But of late years it has become reasonably certain that no planet large enough to produce the effect observed can be there. So thoroughly has every possible explanation been sifted out and found wanting, that some astronomers are now inq
us fact that, although they were never learning so fast as at the present day, yet there seems to be more to learn now than there ever was before. Great and numerou