ia playing no unimportant part in many of the industries of our modern civilized life. So important are they that there is no one who is not di
iving Nature appears limitless, for life processes have been going on in the world through countless centuries with seemingly unimpaired vigour. At the very bottom we find this never-ending exhibition of vital power dependent upon certain activities of micro-organisms. So thoroughl
A AS SC
y it crumbles into a soft, brownish, powdery mass, and eventually the whole sinks into the soil, is overgrown by mosses and other vegetation, and the tree trunk has disappeared from view. In the same way the body of the dead animal undergoes the process of the softening of its tissues by decay. The softer parts of the body rapidly dissipate, and even the bones themselves eventually are covered with the soil and disintegrated, until in time they, too, disappear from any visible existence. This whole process is one of decay, and the resu
f moulds, for this group of organisms alone appears to be capable of attacking such hard woody structure. The later part of the decay, however, is largely carried on by bacterial life. In the decomposition o
lants, we shall see that long since the earth would have been uninhabitable. If the dead bodies of plants and animals of past ages simply accumulated on the surface of the ground without any forces to reduce them into simple compounds for dissipation, by their very bulk they would have lon
ENTS IN NATURE
xistence. Plants and animals both require food, animals depending wholly upon plants therefor. Plants, however, equally with animals, require food, and although they obtain a considerable portion of their food from the air, yet no inconsiderable part of
food from animal to plant and from plant to animal is familiar to nearly every one. It is a well-known fact that animals in their respiration consume oxygen, but exhale it again in combination with carbon as carbonic dioxide. On the other hand, plants in their life consume the carbonic dioxide and exhale the oxygen again as free oxygen. Thus each of these kingdoms ma
es of changes by which it is brought from a condition in which it is proper food for plants back again into a condition when it is once more a proper food for plants, is one of the interesting discoveries of modern science, and
soil and air, and through the agency of the sun's rays. These products of plant life now form foods for the animal kingdom. Starches, fats, and proteids are animal foods, and upon such complex bodies alone can the animal kingdom be fed. Animal life, standing high up in the circle, is not capable of extracting its nutriment from the soil, but must take the more complex foods which have been manufactured by plant life. These complex foods enter now into the animal and take their place in the animal body. By the animal activities, some of the foods are at once decomposed into carbonic acid and water, which, being dissipated into the air, are brought back at once into the condition in which they can serve again as plant food. This part of the food is thus brought back again to the bottom of the circle (Fig. 25, dotted lines). But while it is true that animals do thus reduce some of their foods to the simple condition of carbonic acid and water, this is not true of most of the foods which contain nitrogen. The nitrogenous foods are as necessary for the life as the carbon foods, and animals do not reduce their nitrogenous foods to the condition in which plants can prey upon them. While plants furnish them with nitrogenous food, they c
pon the products of animal life, whether they are such products as muscle tissue, or fat, or sugar, or whether they are the excreted products of animal life, such as urea, and produce therein the chemical decomposition changes already noticed. As a result of this chemical decomposition, the complex bodies are broken into simpler and simpler compounds, and the final result is a very tho
ycle, and have come back again to the position in the circle where they started. In regard to the nitrogen portion of the food, however, it very commonly happens that the products which arise as the result of the decomposition processes are not yet in proper condition for plant food. They are reduced into a condition actually too simple for the use of plants. As a result of these putrefactive changes, the nitrogen products of animal life are broken frequently into compounds as simple as ammonia (NH3), or into compounds which the chemists speak of as nitrites (Fig. 25 at D). Now these compounds are not ordinarily within the reach of plant life. The luxuriant vegetation of the
apparently several different kinds of nitrifying bacteria with different powers. Some of them cause an oxidation of the nitrogen products by means of which the ammonia is united with oxygen and built up into a series of products finally resulting in nitrates (Fig. 26). By the action of other species still higher nitrogen compounds, including the nitrites, are further oxidized and built up into the form of nitrates. Thus these nitrifying organisms form the last link in the chain that binds the animal kingdom to the vegetable kingdom (Fig. 25 at 4). For after the nitrifying organisms have oxidized ni
be broken into still simpler forms, and the nitrogen will finally be dissipated into the air in the form of free nitrogen. This dissipation of free nitrogen into the air is going on in the world wherever putrefaction takes place. Wherever decomposition of nitrogen products occurs some free nitrogen is eliminated. Now, this part of the nitrogen has passed beyond the reach of plants, for plants can not extract free nitrogen from the air. In the diagram this is represented as a portion of the material which, through the agency of the decompos
l into a brook or river is eventually carried to the sea, and the products of its decomposition pass into the ocean and are, of course, lost to the soil. Now, while this gradual extraction of nitrogen from the soil by drainage is a slow one, it is nevertheless a sure one. It is far more r
nitrogen compounds. When they are exploded the nitrogen of the compound is dissipated into the air in the form of gas, much of it in the form of free nitrogen. The basis from which explosive compounds are made contains nitrogen in the form in which it can be used by plants. Saltpetre, for example, is
l plant life cease from lack of nutrition, and the disappearance of animal life will follow rapidly. It is this loss of nitrogen in large measure that is forcing our agriculturists to purchase fertilizers. The last fifteen years have shown us, however, that here again we may lo
mulate, and they do accumulate inevitably if the bacteria are present in the proper quantity and the proper species. It appears that, as a rule, this fixation of nitrogen is not performed by any one species of microorganisms, but by two or three of them acting together. Certain combinations of bacteria have been found which, when inoculated in the soil, will bring about this fixation of nitrogen, but no o
ing for a length of time, be found to have accumulated a considerable quantity of fixed nitrogen in its tissues The only source of this nitrogen has been evidently from the air which bathes the leaves of the plant or permeates the soil and bathes its roots This fact was at first disputed, but subsequently demonstrated to be true, and was found later to be associated with the combined action of these legumes and certain soil bacteria. When a legume thus gains nitrogen from the air, it develops upon its roots little bunches known as root nodules or root tubercles. The nodules are sometimes the size of the head of a pm, and sometimes much larger than this, occasionally reaching the size of a large pe
after having finished its ordinary life, the plant will die, and then the roots and stems and leaves, falling upon the ground and becoming buried, will be seized upon by the decomposition bacteria already mentioned. The nitrogen which has thus become fixed in their tiss
hes the energy for the motion. It is the sunlight that forces the food around the circle and keeps up the endless change; and so long as, the sun continues to shine upon the earth there seems to be no reason why the process should ever cease. It is this repeated circulation that has made the continuation of life possible for the millions and millions of years of the earth's history. It is this continued circulation that makes life possible still, and it is only this fact that the food is thus capable of ever circulating from animal to plant and from plant to animal that makes it possible for the living world to continue its existence. But, ah we have seen, one half o
BACTERIA TO
ave an even more intimate relation to the farmer's occupation. At the foundation, farming consists in the cultivation of plants and animals, and we have already seen how essential are the bacteria in the continuance of anima
ING OF
as a result. This does not commonly occur, however, in ordinary soil. But even here bacteria do grow in the seed, though not so abundantly as to produce any injury. Indeed, it has been claimed that their presence in the seed in small quantities is a necessity for the proper sprouting of the seed. It has been claimed that their growth tends to soften the food material in the seed, so that the young seedling can more readily absorb it for its own food, and that without such a softening the seed remains too hard for the p
SI
can not be so treated. Much of the rank growth of the farm, like cornstalks, is good food while it is fresh, but is of little value when dried. The farmer has from experience and observation discovered a method of managing bacterial growth which enables him to avoid their ordinary evil effects. This is by the use of the silo. The silo is a large, heavily built box, which is open only at the top. In the silo the green food is packed tightly, and when full all a
- producing bacteria after a little begin to grow slowly, and in time the silage is rendered somewhat sour by the production of acetic acid. But the exclusion of air, the close packing, and the small amount of moisture appear to prevent the growth of the common putrefactive bacteria, and the silage remains good for a long time. In other methods of filling the silo, the food is very quickly packed and densely crowded together so as to exclude as much air as possible from the beginning. Under these conditions the lack of moisture and air prevents fermentative action very largely. Only certain acid-producing organisms gro
ILITY OF
or indirectly by raising animals which feed upon the products of the soil. In either case the fertility
ubtless this is true, and the weathering action is largely a physical and chemical one. Nevertheless, in this fundamental process of rock disintegration bacterial action plays a part, though perhaps a small one. Some species of bacteria, as we have seen, can live upon very simple foods, finding in free nitrogen and carbonates sufficientl
ise, among other things, to hydrogen sulphide (H2S). This gas, which is of common occurrence in the atmosphere, is oxidized by bacterial growth into sulphuric acid, and this is the basis of part of the soil sulphates. The deposition of iron phosphates and iron silicates is probably also in a measure aided by bacterial action. A
undoubtedly an efficient agency m this nitrogen fixation. As already seen, the bacteria are able to seize the free atmospheric nitrogen, converting it into nitrite and nitrates. We have also learned that they can act in connection with legumes and some other plants, enabling them to fix atmospheric nitrogen and store it m their roots. By these two means the nitrogen ingredient in the soil is prevented from becoming exhausted by the processes of dissipation constantly going on. Further, by some such agency must we imagine the original nitrogen soil ingredient to have been derived. Such an organic agency is the only one yet discerned which appears to have been efficient in furnishing virgin soil with its nitrates, and we must therefore look upon bacteria as essential to the original fertilit
occurred. Fresh animal excretions are of little or no value as a fertilizer. The farmer, therefore, commonly allows it to remain in heaps for some time, and it undergoes a slow change, which gradually converts it into a condition in which it can be used by plants. This ripening is readily explained by the facts already considered The fresh animal secretions consist of various highly complex compounds of nitrogen, and the ripening is a process of their decomposition. The proteids are broken to pieces, and their nitrogen elements reduced to the form of nitrates, leucin, etc, or even to ammonia or free nitrogen. Further, a second process occurs, the process of oxidation of these nitrogen compounds already noticed, and the ammonia and nitrites resulting from the decomposition are built into nitrates. In short, in this ripening manure the processes noticed in the fi
s is the ammonia, which, being a gas, is readily dissipated into the air. Knowing this common result of bacterial action, the scientist has told the farmer that, by adding certain common chemicals to his decomposing manure heap, chemicals which will readily unite with ammonia, he may retain most of the nitrogen in this heap in the form of ammonia salts, which, once formed, no longer show a tendency to dissipate into the air. Ordinary gypsum, or superphosphates, or plaster will readily unite with ammonia, and these added to the manure heap largely counteract the tendency of the nitrogen to waste, thus enabling the farmer to put back into his soil most of the
the agency of bacteria, obtain nitrogen from the air and store it in their roots. Second, after the crop is ploughed into the soil various decomposing bacteria seize upon it, pulling the compounds to pieces. The carbon is largely dissipated into the air as carbonic dioxide, where the next generation of plants can get hold of it. The minerals and the nitrogen remain in the soil. The nitrogenous portions go through the same series of decomposition and synthetical changes already described, and thus eventually the nitrogen seized from the air by the combined action of the legumes and the bacteria is converted into nitrates, and will serve for food for the next set of plants grown on the same soil. Here is thus a practical method
RCES OF TROUBLE
er uses a cold cellar. The bacteria prevent the farmer from preserving meats for any length of time unless he checks their growth in some way. They get into the eggs of his fowls and ruin them. Their troublesome nature in the dairy in preventing the keeping of milk has already been noticed. If he plants his seeds in very moist, damp weather, the soil bacteria cause too rapid a decomposition of the seeds and they rot in the ground instead of sprouting. They produce disagreeable odours, and are the cause of most of the peculiar smells, good and bad, around the barn. They attack the organic matter which gets into his well or brook or pond, decomposing it, filling the water with disagreeable and perhaps poisonous products which render it unfit to drink. They not only aid in the decay of the fallen tree in his forests; but in the same way attack the timber which he wish
sms which furnish his dairy with its butter flavours and with the taste of its cheese. But, on the other hand, against them he must be constantly alert. All his food products must be protected from their ravages. A successful farmer's life, then, largely resolves itself into a skilful management of bacterial activity. To aid them in destroying or decomposing everything which he does not desire
aluable products. It is the source of our illuminating gas, and ammonia is one of the products of the gas manufacture. From the coal also comes coal tar, the material from which such a long series of valuable materials, as aniline colours, carbolic acid, etc, is derived. The list of products which we owe to coal is very long,
ed an important part in coal manufacture in two different directions. The first appears to be in furnishing these plants with nitrogen. Without a store of fixed nitrogen in the soil these carboniferous plants could not have grown. This matter has already been considered. We have no very absolute knowledge as to the agency of bacteria in furnishing nitrogen for this vegetation in past ages, but there is every reason to believe
nditions of moisture and temperature are right, begin to undergo a fermentation. Ordinarily this action of bacteria, as already noticed, produces an almost complete though slow oxidation of the carbon, and results in the total decay of the vegetable matter. But if the vegetable mass be covered by water and mud under proper conditions of moisture and temperature, a different kind of fermentation arises which does not produce such complete decay. The covering of water prevents the access of oxygen to the fermenting mass, an oxidation of the carbon is largely prevented, and the vegetable matter slowly changes its character. Under the influence of this slow fermentation, aided, probably by pressure, the mass becomes more and more solid and condensed, its woody character becomes less and less distinct, and there is a gradual loss of the hydrogen and the oxygen. Doubtless there is a loss of carbon also, for there is an evolution of marsh gas which contains carbon. But, in thi
on of peat, we find it becoming denser and denser, and at the bottom it is commonly of a hard consistence, brownish in colour, and with only slight traces of the original woody structure. Such material is called lignite. It con
s been commonly regarded as simply a slow chemical change, but its general similarity to other fermentative processes is so great that we can have little hesitation in attributing it to micro-organisms, and doubtless to some forms of plants allied to bacteria. There is no reason for doubting that bacteria existed in the geological ages with essentially the same powers as they now possess, and to some forms of bacteria which grow in the absence of oxygen can we probably attribute the slow change which has produced coal. Here, then